CsTCPs regulate shoot tip development and catechin biosynthesis in tea plant (Camellia sinensis)
نویسندگان
چکیده
منابع مشابه
Flavonoid biosynthesis in the tea plant Camellia sinensis: properties of enzymes of the prominent epicatechin and catechin pathways.
Leaves of tea (Camellia sinensis L.) contain extraordinary large amounts of (-)-epigallocatechin, (-)-epicatechin, (+)-gallocatechin, and (+)-catechin and derivatives of these compounds that show positive effects on human health. The health-promoting effects of flavan 3-ols, especially those of green tea, are of scientific and public interest. Furthermore, they play a crucial role in defense ag...
متن کاملExpression of caffeine biosynthesis genes in tea (Camellia sinensis).
Using semi-quantitative reverse transcription-PCR, we studied the expression of genes encoding caffeine synthase (TCS1), inosine-5'-monophosphate dehydrogenase (TIDH), S-adenosyl-L-methionine synthase (sAMS), phenylalanine ammonia-lyase (PAL) and alpha-tubulin (Tua1) in young and mature leaves, stems and roots of 4-month-old tea seedlings and young and old tea tissue cultures. The amounts of tr...
متن کاملCombined small RNA and degradome sequencing reveals complex microRNA regulation of catechin biosynthesis in tea (Camellia sinensis)
MicroRNAs are endogenous non-coding small RNAs playing crucial regulatory roles in plants. Tea, a globally popular non-alcoholic drink, is rich in health-enhancing catechins. In this study, 69 conserved and 47 novel miRNAs targeting 644 genes were identified by high-throughout sequencing. Predicted target genes of miRNAs were mainly involved in plant growth, signal transduction, morphogenesis a...
متن کاملShoot epicatechin and epigallocatechin contents respond to water stress in tea [Camellia sinensis (L.) O. Kuntze].
An experiment was conducted to determine the association of tea catechins to water stress in tea, with the objective of determining their suitability as indicators for predicting drought tolerance in tea (Camellia sinensis). The study consisted of six tea clones (BBK 35, TRFK 6/8, TRFK 76/1, TRFK 395/2, TRFK 31/30, and TRFK 311/287) and four levels of soil water content (38, 30, 22, and 14% v/v...
متن کاملIdentification of UDP-glycosyltransferases involved in the biosynthesis of astringent taste compounds in tea (Camellia sinensis)
Galloylated catechins and flavonol 3-O-glycosides are characteristic astringent taste compounds in tea (Camellia sinensis). The mechanism involved in the formation of these metabolites remains unknown in tea plants. In this paper, 178 UGT genes (CsUGTs) were identified inC. sinensis based on an analysis of tea transcriptome data. Phylogenetic analysis revealed that 132 of these genes were clust...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Horticulture Research
سال: 2021
ISSN: 2662-6810,2052-7276
DOI: 10.1038/s41438-021-00538-7